Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation

نویسندگان

  • Kohana D Leuba
  • Naside Gozde Durmus
  • Erik N Taylor
  • Thomas J Webster
چکیده

Biofilms formed by antibiotic resistant Staphylococcus aureus (S. aureus) continue to be a problem for medical devices. Antibiotic resistant bacteria (such as S. aureus) often complicate the treatment and healing of the patient, yet, medical devices are needed to heal such patients. Therefore, methods to treat these Biofilms once formed on medical devices are badly needed. Due to their small size and magnetic properties, superparamagnetic iron oxide nanoparticles (SPION) may be one possible material to penetrate Biofilms and kill or slow the growth of bacteria. In this study, SPION were functionalized with amine, carboxylate, and isocyanate functional groups to further improve their efficacy to disrupt the growth of S. aureus Biofilms. Without the use of antibiotics, results showed that SPION functionalized with carboxylate groups (followed by isocyanate then amine functional groups then unfunctionalized SPION) significantly disrupted Biofilms and retarded the growth of S. aureus compared to untreated Biofilms (by over 35% after 24 hours).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of superparamagnetic nanoparticles for prosthetic biofilm prevention

As with all surgical procedures, implantation comes with the added risk of infection. The goal of this in vitro study was to explore the use of superparamagnetic iron oxide nanoparticles (SPION) as a multifunctional platform to prevent biofilm formation. Results showed for the first time decreased Staphylococcus epidermidis numbers when exposed to 100 microg/ml of SPION for 12 hours and this tr...

متن کامل

Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa

Objective(s): Pseudomonas aeruginosa is a nosocomial pathogen resistant to most antimicrobial treatments. Furthermore, it persists in adverse environments thereby forming biofilms on various surfaces. Researchers have therefore focused on antibiofilm strategies using nanoparticles due to their unique physicochemical properties. Superparamagnetic iron oxide nanoparticles (SIONPs) have recently s...

متن کامل

Preparation of surface modified magnetic Iron Oxide nanoparticles and study of their colloidal behavior

In this work, we report synthesis of surface modified superparamagnetic iron oxide nanoparticles (SPION) by co-precipitation method using FeSO4.7H2O and Fe2(SO4)3.5H2O as precursors and trisodium citrate dihydrate as surfactant. Surface modification of the as prepared samples was performed in pot by sol-gel precipitation method u...

متن کامل

Preparation of surface modified magnetic Iron Oxide nanoparticles and study of their colloidal behavior

In this work, we report synthesis of surface modified superparamagnetic iron oxide nanoparticles (SPION) by co-precipitation method using FeSO4.7H2O and Fe2(SO4)3.5H2O as precursors and trisodium citrate dihydrate as surfactant. Surface modification of the as prepared samples was performed in pot by sol-gel precipitation method u...

متن کامل

Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors

Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with recombinant human epidermal growth factor (SPION-EGF) were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013